US009349011B2

a2z United States Patent (10) Patent No.: US 9,349,011 B2
Jones et al. (45) Date of Patent: May 24, 2016
(54) METHODS AND APPARATUS TO IDENTIFY A 2004/0128515 Al* 7/2004 Rabinetal. ... 713/176
DEGRADATION OF INTEGRITY OF A 2005/0251858 Al* 11/2005 DelRegno et al.
2006/0004737 Al* 12006 Grzonka
PROCESS CONTROL SYSTEM 2006/0031673 Al 2/2006 Beck et al.
. 2006/0230451 Al* 10/2006 Krameretal. 726/22
(75) Inventors: Aaron C. Jones, Austin, TX (US); 2007/0150948 Al* 6/2007 De Spiegeleer . . 726/22
Robert B. Havekost, Elgin, TX (US) 2008/0155509 Al1* 6/2008 Ohtaetal. .. 7177127
2011/0039237 Al* 2/2011 Skare SB 23/0267
(73) Assignee: Fisher-Rosemount Systems, Inc., N 434/118
Round Rock, TX (US) 2012/0030761 Al 2/2012 Babaetal.ccccoenene. 726/23
> 2013/0318607 Al™* 112013 Reedcccceeenn GOGF 11/3062
726/23
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 563 days.
WO 0233525 A2 4/2002
(21) Appl. No.: 13/472,916 WO 2006047163 A2 5/2006
WO 2012015485 Al 2/2012
(22) Filed: May 16,2012 OTHER PUBLICATIONS
(65) Prior Publication Data Coutinho et al., Anomaly Detection in Power System Control Center
US 2013/0307690 Al Nov. 21, 2013 Critical Infrastructures using Rough Classification Algorithm, Jun.
2009, 3rd IEEE International Conference on Digital Ecosystems and
(51) Int.ClL Technologies, pp. 733-738.*
GOGF 21/57 (2013.01) UK Intellectual Property Office, “Search Report”, issued in connec-
GO6F 21/64 (2013.01) tion with corresponding Great Britain Patent Application No.
(52) US.Cl GB1308469 .4 on Oct. 29, 2013 (2 pages).
CPC GOG6F 21/577 (2013.01); GOGF 21/64 * cited by examiner
(2013.01)
(58) Field of Classification Search . .
CPC GOGF 21/577; GOGF 21/64; GOSB 23/02 Lrimary Examiner — Kenneth Chang ,
ORI 713187 (74) Attorney, Agent, or Firm —Hanley, Flight &
See application file for complete search history. Zimmerman, LLC
(56) References Cited (57) ABSTRACT
U.S. PATENT DOCUMENTS Methods and apparatus to identify a degradation of integrity
of'aprocess control system are disclosed. An example method
5987611 A 11/1999 Freund includes identifying a file on a file system of the process
6,694,434 Bl 2; 2004 MCG‘;G et 211 control system. The example method further includes deter-
;’ggg’gzé E% g /38(1)? ISA;%:hOeSZI ’ mining if the file is identified in a system profile, the system
2002/0116637 Al* 872002 Deitsch et al. ... 713/201 profile identifying files expected to be present. A degradation

2002/0120426 Al* 8/2002 Sasakietal. 702/183
2002/0163427 Al* 11/2002 Eryureketal. ... 340/500
2004/0039921 Al* 2/2004 Chuang 713/187
2004/0123137 Al* 6/2004 Yodaiken GOG6F 21/55

726/22

FILE SYSTEM
INTEGRITY
VERIFICATION

LOAD KNOWN
FILE SYSTEM
PROFILE

DOES KNOWN FILE
SYSTEM PROFILE
CONTAIN EXCEPTION?

580

vES DO MORE NO
FILES EXIST?

1S IDENTIFIED
FILE INCLUDED
IN PROFILE?

LoG DETECTION
OF DEGRADED 570
INTEGRITY

of integrity of the process control system is identified when
the file is not identified in the system profile.

21 Claims, 7 Drawing Sheets

VES

DETERMINE HASH
VALUE OF
IDENTIFIED FILE
'DOES DETERMINED HASH
VALUE OF FILE MATCH

HASH VALUE OF FILE

INCLUDED IN PROFILE?
YES

END

U.S. Patent May 24, 2016 Sheet 1 of 7 US 9,349,011 B2

100
110~ PROCESS CONTROL SYSTEM
115
115
125
120
r-J
PROCESS
CONTROL SYSTEM
PROVIDER
130 "
r—J
PROCESS N
CONTROL SYSTEM ~
ADMINISTRATOR o
X
FIG. 1
115
\

PROCESS CONTROL NODE

PROCESS CONTROL COMPONENTS [—1210
I

FILE SYSTEM L1220

NETWORK COMMUNICATOR 1230

I
PROCESSOR 1240

I
INTEGRITY GUARD 250

FIG. 2

U.S. Patent May 24, 2016 Sheet 2 of 7 US 9,349,011 B2

250
/-J
INTEGRITY GUARD
FILE SYSTEM VERIFIER L —310
I
NETWORK COMMUNICATIONS | |__35
VERIFIER
|
ACTIVE PROCESS VERIFIER L L—330

340 PROFILE®

STORE ©

il

ALERTER

— FILE SYSTEM
PROFILE 311

L NETWORK COMMUNICATIONS
PROFILE 321

[ACTIVE PROCESS
PROFILE 331

A
\350

FIG. 3

U.S. Patent May 24, 2016 Sheet 3 of 7 US 9,349,011 B2

400

(START)

410
f-J
FILE SYSTEM
> INTEGRITY
VERIFICATION
420
K—J
NETWORK
| | | communicaTIONS
INTEGRITY
VERIFICATION
430
ACTIVE PROCESS
. INTEGRITY
VERIFICATION y A0
“ / DEGRADATION
OF INTEGRITY
\ DETECTED?
s 450
ALERT PROCESS CONTROL
SYSTEM ADMINISTRATOR
460
v
ALERT PROCESS CONTROL
SYSTEM PROVIDER
< |
h J

C END)

FIG. 4

U.S. Patent

500

FIG. 5

May 24, 2016 Sheet 4 of 7 US 9,349,011 B2
FILE SYSTEM
INTEGRITY
ERIFI(ATIO
LOAD KNOWN 510
FILE SYSTEM [~
PROFILE
IDENTIFY FILE
STORED ON FILE }—520
SYSTEM
* 530
r-J
DOES KNOWN FILE O
SYSTEM PROFILE
CONTAIN EXCEPTION?
YES
IS IDENTIFTED VS
FILE INCLUDED (_5,50
9
IN PROFILE? DETERMINE HASH
NO VALUE OF
IDENTIFIED FILE
560 ¥
\
DOES DETERMINED HASH
NO VALUE OF FILE MATCH
HASH VALUE OF FILE
INCLUDED IN PROFILE?
y YES
LOG DETECTION
- OF DEGRADED (—"370
INTEGRITY
580 n
~ 4
YES DO MORE NO
FILES EXIST? END

U.S. Patent May 24, 2016 Sheet 5 of 7 US 9,349,011 B2

600
NETWORK
COMMUNICATIONS
INTEGRITY
VERIFICATION

LOAD KNOWN NETWORK 610
COMMUNICATIONS PROFILE [

|

IDENTIFY NETWORK 620
COMMUNICATIONS [

Y

ARE IDENTIFIED NETWORK
NO/ COMMUNICATIONS INCLUDED
IN COMMUNICATIONS PROFILE?

¢YES

LOG DETECTION
OF DEGRADED [—640
INTEGRITY

630

A

FIG. 6

U.S. Patent May 24, 2016

700 ACTIVE PROCESS

INTEGRITY
VERIFICATION

v

LOAD KNOWN
ACTIVE PROCESS
PROFILE

|

Sheet 6 of 7 US 9,349,011 B2

IDENTIFY ACTIVE
PROCESS(ES) ON PROCESS
CONTROL SYSTEM NODE

DOES KNOWN ACTIVE
PROCESS PROFILE
CONTAIN EXCEPTION?

YIS

730
NO

IS IDENTIFIED
PROCESS
INCLUDED IN
PROFILE?

740
750
\

DETERMINE

770
\

NO SIGNATURE OF

IDENTIFIED PROCESS

v

DOES SIGNATURE OF
PROCESS MATCH
SIGNATURE INCLUDED IN
PROFILE?

YES

760
\

NO

h

OF

LOG DETECTION

INTEGRITY

DEGRADED

-

780
-~ Y
DO MORE ACTIVE

PROCESSES EXIST?

YES

NO

FIG. 7

U.S. Patent May 24, 2016 Sheet 7 of 7 US 9,349,011 B2

|
828
| 814 MASS/_ | 832
| RANDOM e STORAGE CQBPD
ACCESS >} HN
| MEMORY N 532 (JNSTRUCTIONS
1 -

| T <<z:2 — T/_ |
| DEVICE(S) |

I~ 816 |
| READ ONLY ¢ — 820 826
| MEMORY [*%] |

—'_ «»| INTERFACE
| 832 818 —
e P |
|| PrROCESSOR OUTPUT |
DEVICE(S) |
| LOCAL <>
| MEMORY |
B |
32

FIG. 8

US 9,349,011 B2

1
METHODS AND APPARATUS TO IDENTIFY A
DEGRADATION OF INTEGRITY OF A
PROCESS CONTROL SYSTEM

FIELD OF THE DISCLOSURE

This disclosure relates generally to process control systems
and, more particularly, to methods and apparatus to identify a
degradation of integrity of a process control system.

BACKGROUND

Security breaches are a continuous threat to computing
systems such as process control systems (e.g., power plants,
oil refineries, chemical facilities, etc.). A security breach of a
process control system may have disastrous effects. To pre-
vent such a security breach, process control systems are inten-
tionally isolated from outside communications. A process
control system typically includes all components needed to
perform day-to-day operations of the system and does not
communicate with outside systems.

However, some information associated with and/or gener-
ated by the process control system may need to be shared
outside of the process control system such as, for example,
alerts, errors messages, warning messages, etc. A common
technique for sharing information outside ofa process control
system involves an electronic communication system such as,
for example, the Internet. However, communicating via such
an electronic communication system may create security vul-
nerabilities within the process control system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example process control
system including process control nodes.

FIG. 2 is a block diagram of an example implementation of
the process control nodes of FIG. 1 including an integrity
guard.

FIG. 3 is a block diagram of an example implementation of
the integrity guard of the example process control nodes of
FIGS. 1 and 2.

FIG. 4 is a flowchart representative of an example method
which may be performed to detect a change in integrity of the
process control system of FIG. 1.

FIG. 5 is a flowchart representative of an example method
which may perform a file system integrity verification.

FIG. 6 is a flowchart representative of an example method
which may perform a network traffic integrity verification.

FIG. 7 is a flowchart representative of an example method
which may perform an active process integrity verification.

FIG. 8 is ablock diagram of an example processor platform
capable of performing the example methods of FIGS. 4-7 to
implement the example process control nodes of FIGS. 1
and/or 2, and/or the example integrity guard of FIGS. 2 and/or
3.

SUMMARY

An example method of identifying a degradation of integ-
rity of a process control system includes identifying a file on
a file system of the process control system. It is then deter-
mined if the file is identified in a system profile. The system
profile identifies files expected to be present on the file sys-
tem. A degradation of integrity of the process control system
is identified when the file is not identified in the system
profile.

10

15

20

25

30

35

40

45

50

55

60

65

2

An example apparatus to identify a degradation of integrity
of'a process control system includes a file system verifier to
identify a difference between a property of a file stored on a
file system of a process control node and a first stored value as
a degradation of integrity. The example system further
includes an active process verifier to identity a difference
between a property of an active process executed by the
process control node and a second stored value as the degra-
dation of integrity.

DETAILED DESCRIPTION

A security breach of a process control system may allow
modifications to a process control system that are malicious
toward the customer (e.g., the operator of the process control
system) and/or toward the producer (e.g., a supplier of the
process control system) of the process control system. Modi-
fications that affect the customer may include taking control
of a process control system, gaining access to confidential
information and/or settings of the process control system,
disabling the process control system, etc. Modifications that
affect the producer of the process control system may include
gaining access to a feature that a customer may otherwise
need to pay for, etc.

To address security breaches, the example methods and
apparatus described herein include an integrity guard in one
or more process control nodes within a process control sys-
tem. The example integrity guard monitors and verifies the
integrity of the process control node and, thereby, the process
control system. The integrity of the process control node is
monitored in a number of ways. For example, the integrity
guard monitors and verifies a file system of the process con-
trol node, the integrity guard monitors and verifies network
communications of the process control node, and/or the integ-
rity guard monitors and verifies active processes of the pro-
cess control node.

In consumer systems (e.g., personal computers), antivirus
systems are used to detect system problems. Antivirus sys-
tems use definitions of known problems such as, for example,
signatures and/or definitions of known malicious
application(s), etc. Antivirus systems then identify problems
by positively matching applications and/or files on the system
with the definitions. That is, anything that matches a defini-
tion is considered a problem. In contrast, the integrity guard
of the examples illustrated below identify degradations in
integrity of the process control node and/or process control
system by negatively identifying file system irregularities,
network communication irregularities, and/or active process
irregularities. That is, anything that does not match a defini-
tion is considered an irregularity and/or problem.

In the examples described herein, a signature includes one
or more identifying features (e.g., a size, an update date,
contents of, etc.) of a file, application, process, etc. that
enables the integrity guard to identify the file, application,
process, etc.

Upon detection of a degradation of integrity of the process
control system, the integrity guard may send an alert to an
administrator of the process control system and/or a provider
of'the process control system. As described herein, the admin-
istrator may be any person and/or group of people associated
with and/or otherwise concerned with the process control
system. For example, the administrator of the process control
system may be an operator, an installer, a manager, a user, an
owner, or any other person and/or group of people who should
receive information related to the process control system.
Such an alert may enable the administrator of the process
control system to take precautionary measures. The alert may

US 9,349,011 B2

3

allow the provider of the process control system to identify
when a customer has attempted to modify the process control
system to, for example, gain access to a paid feature. In
addition to and/or as an alternative to sending alerts, the
integrity guard may display warnings to the administrator,
end illegitimate processes, shut down systems or services,
perform security validations, etc.

FIG. 1 is a block diagram 100 of an example process
control system 110 including one or more process control
nodes 115. In some examples, the process control system 110
operates a power plant, an oil refinery, a chemical facility, etc.

Example process control systems, like the process control
system 110 of FIG. 1, typically include one or more process
control nodes 115 having field devices communicatively
coupled to the process control nodes 115 via analog, digital or
combined analog/digital buses. The field devices, which may
be, for example, valves, valve positioners, switches and trans-
mitters (e.g., temperature, pressure and flow rate sensors),
perform process control functions within the process control
system 110 such as opening or closing valves and measuring
process control parameters. The process control nodes 115
receive signals indicative of process measurements made by
the field devices, process this information to implement a
control routine, and generate control signals that are sent
within the process control system 110 to control the operation
of'the process. In this manner, the process control nodes 115
may execute and coordinate control strategies using the field
devices via the buses and/or other communication links com-
municatively coupling the field devices. In some examples,
the process control nodes 115 communicate with resources
outside of the process control system 110 to, for example,
provide alerts and/or warnings, retrieve parameters to be used
within the process control system 110, etc.

The process control system 110 of the illustrated example
is provided to the operator of the process control system 110
by a process control system provider 120. The process control
system provider 120 communicates with the process control
system 110 to, for example, receive alerts, provide updates to
the process control system 110, ensure proper licensing, etc.
In the illustrated example, the process control system pro-
vider 120 communicates with the process control system 110
via the Internet 125. However, any other type of communica-
tion medium may additionally or alternatively be used such
as, for example, a virtual private network (VPN), a dial up
connection, etc.

In the illustrated example, the process control system 110
is administered by a process control system administrator
130. As described herein, the process control system admin-
istrator 130 may be any person and/or group of people asso-
ciated with and/or otherwise concerned with the process con-
trol system 110. For example, the process control system
administrator 130 may be an operator, an installer, a manager,
a user, an owner, or any other person and/or group of people
who should receive information related to the process control
system 110. The process control system administrator 130 of
the illustrated example operates and/or maintains the process
control system 110. In some examples, the process control
system administrator 130 deploys and/or configures the pro-
cess control system 110. Because the process control system
administrator 130 is involved with configuration of the pro-
cess control system 110, the process control system admin-
istrator 130 may, inadvertently or otherwise, activate and/or
install functionalities that are otherwise paid for. In some
examples, the process control system 110 alerts the process
control system administrator 130 when features and/or func-
tionalities that have not been purchased are in operation.
Conversely, the process control system 110 may alert the

40

45

55

4

process control system administrator 130 when features and/
or functionalities that have been purchased are not installed,
configured, and/or operating properly.

FIG. 2 is a block diagram of an example implementation of
the process control node 115 of FIG. 1. The example node 115
includes process control components 210, a file system 220, a
network communicator 230, a processor 240, and an integrity
guard 250.

The example process control components 210 of the illus-
trated example of FIG. 2 include input devices capable of
receiving inputs to control a process via, for example, valves,
pumps, fans, heaters, coolers, and/or other devices. The
example process control node 210 also includes output
devices capable of generating outputs such as, for example,
thermometers, pressure gauges, flow meters, and/or other
devices. In some examples, the process control components
210 are communicatively coupled to a controller (e.g., a
DeltaV™ controller), which collects information output by
the output devices and transmits instructions to the input
devices to cause changes to the process. The information used
by the process control components 210 includes, for example,
process information, environmental information, and values
of'process variables (e.g., measured process variables such as,
for example, reactor inlet pressure).

The example file system 220 of the illustrated example of
FIG. 2 stores information for operating the process control
components 210 and/or, more generally, the process control
node 115. In the illustrated example, the file system 220 is
implemented via a hard disk drive. However, the file system
220 may be any device for storing data such as, for example,
flash memory, magnetic media, etc. Furthermore, the data
stored in the file system 220 may be in any data format such
as, for example, a New Technology File System (NTFS), File
Allocation Table (FAT), etc.

The example network communicator 230 of the illustrated
example of FIG. 2 is an Ethernet interface. In the illustrated
example, the network communicator 230 receives network
communications (e.g., HTTP requests, etc.) from and/or
transmits network communications to other process control
nodes 115 within the process control system 110 and/or other
devices outside of the process control system 110 (e.g.,
devices on the Internet 125, etc.). While in the illustrated
example, the network communicator 230 is an Ethernet inter-
face, any other type of interface may additionally or alterna-
tively be used. For example, the network communicator 230
may include one or more of a Bluetooth interface, a WiFi
interface, a digital subscriber line (DSL) interface, a T1 inter-
face, etc. While in the illustrated example a single network
communicator 230 is shown, any number and/or type(s) of
network communicators may additionally or alternatively be
used. For example, two network communicators (e.g., Ether-
net interfaces) may be used.

The example processor 240 of the illustrated example of
FIG. 2 processes information to operate the process control
node 115. The example processor 240 of FIG. 2 is imple-
mented by a processor executing instructions but could, alter-
natively, be implemented by an Application Specific Inte-
grated Circuit (ASIC), Digital Signal Processor (DSP), Field
Programmable Gate Array (FPGA), or other circuitry. In the
illustrated example, the processor 240 processes information
based on machine-readable instructions stored in the file sys-
tem 220. However, the instructions may be stored in any other
location such as, for example, a memory, an Internet resource,
etc. In the event of a degradation of integrity of the process
control node 115 (e.g., a security breach, etc.), the instruc-

US 9,349,011 B2

5

tions may be modified such that when the processor 240
executes the instructions, the process control node 115 may
not function as intended.

The example integrity guard 250 of the illustrated example
of FIG. 2 monitors and verifies the integrity of the process
control node 115 and, thereby, the process control system
110. The integrity of the process control node 115 is moni-
tored in a number of ways including, for example, monitoring
and verifying the file system 220 of the process control node
115, monitoring and verifying network communications to
and/or from the network communicator 230 of the process
control node 115, and/or monitoring and verifying active
processes being executed by the processor 240 of the process
control node 115.

FIG. 3 is a block diagram of an example implementation of
the integrity guard 250 of the example process control node
115 of FIGS. 1 and 2. The example integrity guard 250
includes a file system verifier 310, a network communications
verifier 320, an active process verifier 330, a profile store 340,
and an alerter 350. The example profile store 340 includes a
file system profile 311, a network communications profile
321, and an active process profile 331. While in the illustrated
example, the file system profile 311, the network communi-
cations profile 321, and the active process profile 331 are
shown as separate profiles, the file system profile 311, the
network communications profile 321, and the active process
profile 331 may be combined and/or arranged into a single
profile (e.g., a system profile).

The example file system verifier 310 is implemented by a
processor executing instructions but could, alternatively, be
implemented by an ASIC, DSP, FPGA, or other circuitry. In
the illustrated example, the file system verifier 310 monitors
and/or verifies the integrity of the file system 220. In the
illustrated example, the file system verifier 310 verifies the
integrity of the file system 220 by checking files on the file
system 220 against a file system profile 311 stored in the
profile store 340. In some examples, the file system verifier
310 computes a hash value of a file on the file system 220 and
determines if the computed hash value matches a previously
calculated hash value of the file stored in the file system
profile 311. In the illustrated example, the hash value is cal-
culated using a hashing algorithm (e.g., Secure Hash Algo-
rithm 1 (SHA-1), Message Digest 5 (MDS5), etc.) If the com-
puted hash value matches the previously calculated hash
value, the file is unchanged. However, if the computed hash
value does not match the previously calculated hash value, the
file has been modified. Modifications to particular files of the
process control system may indicate a degradation of integ-
rity of the process control node 115.

In some examples, the file system profile 311 contains
exceptions for certain files and/or directories of files. For
example, the file system profile 311 may contain an exception
for a log file and/or a log file directory (e.g., a location where
one or more log file(s) may be stored) so that log activity is not
identified as a degradation in integrity of the process
control node 115. If the file system verifier 310 identifies
degradation(s) in integrity of the file system 220 of the pro-
cess control node 115, the file system verifier 310 alerts the
process control system administrator 130 and/or the process
control system provider 120 via the alerter 350. In some
examples, the file system verifier 310 takes action to remove
(e.g., delete, quarantine, etc.) files that have resulted in the
degradation of integrity of the process control node 115.

The file system verifier 310 of the illustrated example
identifies degradations in integrity ofthe process control node
115 by identifying items (e.g., files, directories of files, etc.)
that do not match a profile of a known system. Conversely,

35

40

45

50

6

known anti-virus systems identify malicious files by match-
ing a definition of known problems. For example, whereas an
anti-virus system would scan the file system to identify
whether a file associated with a particular virus is present, the
example file system verifier 310 identifies when any file not
included in the file system profile is present.

The example network communications verifier 320 is
implemented by a processor executing instructions but could,
alternatively, be implemented by an ASIC, DSP, FPGA, or
other circuitry. In the illustrated example, the network com-
munications verifier 320 monitors and verifies network com-
munications to and/or from the network communicator 230
by identifying properties of the network communications. In
the illustrated example, one or more properties of valid com-
munications are stored in a network communications profile
321. The network communications profile 321 of the illus-
trated example is stored in the profile store 340.

In the illustrated example, the network communications
profile 321 includes properties identifying port numbers that
are normally used by the process control node 115. When an
attempt to use a port not normally used by the process control
node 115 is detected, the example network communications
verifier 320 identifies this attempt as a degradation of integ-
rity of the process control node 115. Additionally or alterna-
tively, the network communications profile 321 may include
other parameters as part of the signature(s). For example, the
signature may include destination addresses (e.g., an Internet
Protocol (IP) address, a domain name, an email address, etc.)
used by the process control node 115, message formats used
by the process control node 115, etc.

In some examples, the network communications verifier
320 determines if network communications are indicative of
degradation(s) of integrity when network communications
directed toward a destination not included in the network
communications profile 321 are transmitted. In some
examples, the network communications verifier 320 uses a
challenge/response mechanism to interrogate processes of
the process control node 115 transmitting network commu-
nications.

If the network communications verifier 320 detects a deg-
radation(s) of integrity of the process control node 115, the
network communications verifier 320 alerts the process con-
trol system administrator 130 and/or the process control sys-
tem provider 120 via the alerter 350. In some examples, the
network communications verifier 320 blocks the network
communication(s), logs the network communication(s), etc.

The example active process verifier 330 is implemented by
aprocessor executing instructions but could, alternatively, be
implemented by an ASIC, DSP, FPGA, or other circuitry. In
the illustrated example, the active process verifier 330 moni-
tors and/or verifies active processes being executed by the
processor 240. In the illustrated example, processes are moni-
tored and/or verified based on the active process profile 331.
However, any other manner of identifying processes may
additionally or alternatively be used.

In the illustrated example, the active process profile 331
includes signatures identifying processes (e.g., process
names, Dynamically Linked Libraries (DLLs) used by a pro-
cess, etc.) that are normally used by the process control node
115. In the illustrated example, active processes are identified
when the active process verifier 330 interacts with an operat-
ing system of the process control node 115. In some
examples, active processes are identified as having loaded
one or more DLLs. The active process verifier 330 verifies
each process identified by the operating system of the process
control node 115 against the active process profile 331. Pro-
cesses are checked to determine, for example, whether they

US 9,349,011 B2

7

are loaded from a particular location on the file system 220,
whether a particular DLL is loaded by the process, whether a
file (e.g., an executable, a DLL, a configuration file) has a
computed hash value that matches a hash value stored in the
active process profile 331, etc. When a process is discovered
that does not match a signature of a known process, the active
process verifier 330 performs an action such as, for example,
terminating the process, shutting down the process control
node 115, logging a termination of the process, alerting the
process control system administrator 130 and/or the process
control system provider 120 via the alerter 350, etc.

The profile store 340 of the illustrated example stores pro-
files related to verified configurations of file systems, verified
network communications, verified active processes, and/or
results of previous verifications. The profile store 340 may be
any device for storing data such as, for example, flash
memory, magnetic media, optical media, etc. Furthermore,
the data stored in the profile store 340 may be in any data
format such as, for example, binary data, comma delimited
data, tab delimited data, structured query language (SQL)
structures, etc. While, in the illustrated example, the profile
store 340 is illustrated as a single database, the profile store
340 may be implemented by any number and/or type(s) of
databases.

In some process control systems, a given profile (e.g., the
file system profile 311, the network communications profile
321, the active process profile 331, etc.) may not exist. Thus,
in those systems the profile must be created and/or initialized.
To initialize a profile, the integrity guard identifies files on the
file system of the process control node 115 and computes hash
values therefor. Of course, other methods of initializing a
profile may additionally or alternatively be used such as, for
example, identifying active processes being executed by the
process control node 115, monitoring network communica-
tions of the process control node 115, etc. In the illustrated
example, such a profile initialization is done at the time of
installation of the process control node 115. Thus, the profile
represents a snapshot of the process control node 115 at the
time of profile initialization. However, in some examples, the
profile initialization occurs at a later time such as, for
example, after a configuration change, after installation of a
third party application, etc. The initialized profiles are then
stored in the profile store 340 for future use by the integrity
guard 250.

In some examples, the profile store 340 and/or the profiles
stored therein are synchronized with a remote profile (e.g., a
profile stored on a remote profile server). In the illustrated
example, the remote profile server (not shown) is a server
within the process control system 110. However, in some
examples, the remote profile server is hosted by the process
control system provider 120 (e.g., via the Internet 125). For
example, it may not be feasible to initialize profiles on every
process control node. In some examples, the profile (e.g., the
file system profile 311, the network communications profile
321, the active process profile 331, etc.) is retrieved from
another process control node 115. Thus, the process control
system administrator 130 and/or the process control system
provider 120 may create an updated profile and use that
profile on multiple process control nodes. In some examples,
the profile is automatically updated and pushed to the appro-
priate nodes (e.g., process control nodes performing similar
functionalities) to update the process control nodes.

In some examples, a third party application may need to be
installed on the process control node 115, but appropriate
modifications to the profile may not have been made at the
time of installation. Accordingly, files, network communica-
tions, and/or processes associated with the application will

10

15

20

25

30

35

40

45

50

55

60

65

8

likely be recognized as degradations of integrity. In some
examples, an identifier is added to a log entry corresponding
to the degradation of integrity associated with the newly
installed application to enable auditing of the log entries for
benign third party applications. In the illustrated example, the
log is stored locally on the process control node 115 as a text
based file. However, any other way of storing such informa-
tion may additionally or alternatively be used such as, for
example, a binary file, a database, a logging system (e.g., the
Windows Event Log, etc.). Further, the log entries may be
transmitted to a system as they occur via a remote logging
protocol and/or system such as, for example, a syslog system,
a Simple Network Monitoring Protocol (SNMP). Such logs
may be transmitted to the process control system provider
120, which may then update the profile so that the third party
application is appropriately identified as to whether it is a
degradation of integrity.

The example alerter 350 is implemented by a processor
executing instructions but could, alternatively, be imple-
mented by an ASIC, DSP, FPGA, or other circuitry. In the
illustrated example, the alerter 350 alerts the process control
system administrator 130 and/or the process control system
provider 120 of degradations of integrity of the process con-
trol node 115 and, more generally, the process control system
110. In the illustrated example, the alerter 350 alerts the
process control system administrator 130 and/or the process
control system provider 120 by displaying alert messages
(e.g., displaying a dialog box on a computer display). Addi-
tionally or alternatively, the alerter 350 may alert the process
control system administrator 130 and/or the process control
system provider 120 in any other fashion such as, for
example, an electronic mail (e-mail) message, a short mes-
sage service (SMS) message, system alarms, etc.

While an example manner of implementing the integrity
guard 250 of FIG. 2 has been illustrated in FIG. 3, one or more
of'the elements, processes and/or devices illustrated in FIG. 3
may be combined, divided, re-arranged, omitted, eliminated
and/or implemented in any other way. Further, the example
file system verifier 310, the example network communica-
tions verifier 320, the example active process verifier, the
example profile store 340, the example alerter 350, and/or
more generally the example integrity guard 250 of FIG. 3 may
be implemented by hardware, software, firmware and/or any
combination of hardware, software and/or firmware. Thus,
for example, any of the example file system verifier 310, the
example network communications verifier 320, the example
active process verifier, the example profile store 340, the
example alerter 350, and/or more generally the example
integrity guard 250 of FIG. 3 could be implemented by one or
more circuit(s), programmable processor(s), application spe-
cific integrated circuit(s) (ASIC(s)), programmable logic
device(s) (PLD(s)) and/or field programmable logic device(s)
(FPLD(s)), etc. When any of the apparatus or system claims
of this patent are read to cover a purely software and/or
firmware implementation, at least one of the example file
system verifier 310, the example network communications
verifier 320, the example active process verifier, the example
profile store 340, and/or the example alerter 350 are hereby
expressly defined to include a tangible computer-readable
medium such as a memory, DVD, CD, Blu-ray, etc. storing
the software and/or firmware. Further still, the example integ-
rity guard 250 of FIGS. 2 and/or 3 may include one or more
elements, processes and/or devices in addition to, or instead
of, those illustrated in FIG. 3, and/or may include more than
one of any or all of the illustrated elements, processes and
devices.

US 9,349,011 B2

9

Flowcharts representative of example methods or pro-
cesses for implementing the integrity guard 250 of FIGS. 2
and/or 3 are shown in FIGS. 4-7. In these examples, the
processes may comprise a program(s) for execution by a
processor such as the processor 812 shown in the example
processor platform 800 discussed below in connection with
FIG. 8. The program(s) may be embodied in software stored
on a tangible computer readable medium such as a CD-ROM,
a floppy disk, a hard drive, a digital versatile disk (DVD), a
Blu-ray disk, or a memory associated with the processor 812,
but the entire program and/or parts thereof could alternatively
be executed by a device other than the processor 812 and/or
embodied in firmware or dedicated hardware. Further,
although the example program is described with reference to
the flowcharts illustrated in FIGS. 4-7, many other methods of
implementing the example integrity guard 250 may alterna-
tively be used. For example, the order of execution of the
blocks may be changed, and/or some of the blocks described
may be changed, eliminated, or combined.

As mentioned above, the example processes of FIGS. 4-7
may be implemented using coded instructions (e.g., com-
puter-readable instructions) stored on a tangible computer-
readable medium such as a hard disk drive, a flash memory, a
read-only memory (ROM), a compact disk (CD), a digital
versatile disk (DVD), a cache, a random-access memory
(RAM) and/or any other storage media in which information
is stored for any duration (e.g., for extended time periods,
permanently, brief instances, for temporarily buffering, and/
or for caching of the information). As used herein, the term
tangible computer-readable medium is expressly defined to
include any type of computer-readable storage and to exclude
propagating signals.

Additionally or alternatively, the example processes of
FIGS. 4-7 may be implemented using coded instructions
(e.g., computer-readable instructions) stored on a non-transi-
tory computer-readable medium such as a hard disk drive, a
flash memory, a read-only memory, a compact disk, a digital
versatile disk, a cache, a random-access memory and/or any
other storage media in which information is stored for any
duration (e.g., for extended time periods, permanently, brief
instances, for temporarily buffering, and/or for caching of the
information). As used herein, the term non-transitory com-
puter-readable medium is expressly defined to include any
type of computer-readable medium and to exclude propagat-
ing signals. As used herein, when the phrase “at least” is used
as the transition term in a preamble of a claim, it is open-
ended in the same manner as the term “comprising” is open
ended. Thus, a claim using “at least” as the transition term in
its preamble may include elements in addition to those
expressly recited in the claim.

FIG. 4 is a flowchart 400 representative of an example
method which may be performed to detect a change in integ-
rity of the process control system 110 of FIG. 1. Blocks 410,
420, and 430 of FIG. 4 represent sub-processes and execute in
parallel to detect a change in integrity of the process control
system 110.

In block 410, the example file system verifier 310 of the
integrity guard 250 monitors and/or verifies the file system
220 of the process control node 115. The operations of the file
system verifier 310 are further described in connection with
FIG. 5. In block 420, the example network communications
verifier 320 of the integrity guard 250 monitors and/or verifies
network communications of the network communicator 230
of the process control node 115. The operations of the net-
work communications verifier 320 are further described in
connection with FIG. 6. In block 430, the example active
process verifier 330 of the integrity guard 250 monitors and/

10

20

25

30

35

40

45

50

55

60

65

10

or verifies active processes executed by the processor 240 of
the process control node 115. The operations of the active
process verifier 330 are further described in connection with
FIG. 7.

As described above, blocks 410, 420, and 430 represent
sub-processes, and are executed in parallel with one another.
In the illustrated example, blocks 410, 420, and 430 are
executed continuously. However, any other method of execut-
ing these sub-processes may additionally or alternatively be
used. For example, blocks 410, 420, and 430 may be periodi-
cally executed to reduce the amount of system resources
utilized (e.g., the monitoring and/or verifying process is
executed once every five minutes, once every hour, once
every day, etc.). Additionally or alternatively, these sub-pro-
cesses may be executed using a combination of continuous
execution and periodic execution. For example, the file sys-
tem verifier 310 may monitor the file system 220 once every
hour (block 410), the network communications verifier 320
may continuously monitor network communications of the
network communicator 230 (block 420), and the active pro-
cess verifier 330 may monitor and/or verify the active pro-
cesses executed by the processor 240 once every five minutes
(block 430). However, any other combination of periodic
and/or continuous execution may additionally or alternatively
be used.

In the illustrated example, a notification is transmitted to
the alerter 350. The notification may inform the alerter 350 as
to a status of the monitoring and/or verifying process. The
notification may be used to identify detection of a degradation
of integrity. The notification may be transmitted in any fash-
ion such as, for example, network communications, inter-
process communication, writing the notification to a file,
termination of a process (e.g., block 410, 420, and/or 430) etc.
Upon receiving the notification, the alerter 350 determines if
a degradation of integrity has been detected (block 440). If
there has been no degradation of integrity, control proceeds to
terminate. As explained above, the process described in FIG.
4 may be repeated periodically and/or executed continuously.

If there has been a degradation of integrity, control pro-
ceeds to block 450 where the alerter 350 alerts the process
control system administrator 130 of the degradation of integ-
rity. In the illustrated example, the alerter 350 alerts the pro-
cess control system administrator 130 by displaying an alert
message (e.g., displaying a dialog box on a computer display)
(block 450). In the illustrated example, the alerter 350 alerts
the process control system provider 120 by displaying an alert
message (e.g., displaying a dialog box on a computer display)
(block 460). However, any other method of alerting the pro-
cess control system administrator 130 and/or the process
control system provider 120 may additionally or alternatively
be used. For example, the alerter 350 may alert the process
control system administrator 130 and/or the process control
system provider 120 by, for example, sending an electronic
mail (e-mail) message, sending a short message service
(SMS) message, triggering system alarms, disabling the pro-
cess control system 110, etc.

FIG. 5 is a flowchart 500 representative of an example
method which may perform a file system integrity verifica-
tion.

The example method of FIG. 5 represents the sub-process
described in block 410 of FIG. 4. The example method begins
execution when the file system verifier 310 loads the file
system profile 311 from the profile store 240 (block 510). The
file system verifier 310 identifies individual files stored on the
file system 220 (block 520). Files may be identified by, for
example, interacting with an operating system of the process
control node 115.

US 9,349,011 B2

11

The file system verifier 310 determines if the identified file
is identified as an exception within the file system profile 331
(block 530). The file may be an exception if, for example, the
file is within a particular directory, the file is of a particular
size, the file has a particular file extension (e.g., an image
(.jpg), a text document (.txt), etc.). If the file is identified in the
file system profile 331 as an exception, control proceeds to
block 580 where it is determined if more files exist (block
580). If the file is not identified as an exception at block 530,
control proceeds to block 540. The file system verifier 310
then determines if the file is included in the profile 331 (block
540). If the file is notincluded in the profile 331 the file system
verifier 310 logs detection of the degradation of integrity
(block 570). Detection of files not included in the profile and
are not contained in an exception allows the file system veri-
fier 310 to detect degradations of integrity when new files are
present on the file system.

If the identified file is included in the profile at block 540,
the file system verifier 310 determines (e.g., computes) a hash
value of the identified file (block 550). The file system verifier
310 then determines if the computed hash value of the iden-
tified file matches the stored hash value corresponding to the
file in the profile (block 560). The computed hash value may
not match the stored hash value if, for example, the file has
been modified. Comparing the hash values allows the file
system verifier 310 to detect if a file has been changed. If the
computed hash value does not match the stored hash value,
the file system verifier 310 logs detection of the degradation
of integrity (block 570). In the illustrated example, the file
system verifier 310 logs the detection of the degradation of
integrity by storing a log entry in a log local to the process
control node 115. However, in some examples, the file system
verifier 310 logs detection of the degradation of integrity by
transmitting to log entry to a logging location (e.g., a logging
server local to the process control system 110, a logging
server remote to the process control system such as, for
example, at the process control system provider, at a third
party, etc.). In some examples, the log entries are transmitted
using a remote logging protocol and/or system such as, for
example, a syslog logging system, a Simple Network Man-
agement Protocol (SNMP), etc. If the computed hash value
does match the stored hash value, the file system verifier 310
proceeds to determine whether there are more files to be
verified (block 580). In the illustrated example, if no addi-
tional files are to be verified control proceeds to terminate the
method of FIG. 5. The alerter 350 then receives a notification
that the sub-process has completed. In some examples, the
operations of FIG. 5 are repeated and/or continued such that
the file system 220 is re-verified.

FIG. 6 is a flowchart 600 representative of an example
method to perform a network traffic communications verifi-
cation. The example method of FIG. 6 represents the sub-
process described in block 420 of FIG. 4.

The example method of FIG. 6 begins execution when the
network communications verifier 320 loads the network com-
munications profile 321 from the profile store 340 (block
610). The network communications verifier 320 identifies
network communications of the network communicator 230
(block 620). The network communications verifier 320 then
determines if the identified network communications are
included in the network communications profile 321 (block
630). In the illustrated example, the network communications
profile 321 includes port numbers (e.g., transmission control
protocol (TCP) port numbers, etc.) that are normally used by
the process control node 115. When an attempt to use a port
notnormally used by the process control node 115 is detected,
the example network communications verifier 320 identifies

20

25

40

45

50

55

12

this attempt as a degradation of integrity of the process con-
trol node 115. When a degradation of integrity of the process
control node 115 is detected, control proceeds to block 640
where the network communications verifier 320 logs the
detection of the degradation of integrity (block 640). In the
illustrated example, the network communications verifier 320
logs the detection of the degradation of integrity by storing a
log entry in a log local to the process control node 115.
However, in some examples, the network communications
verifier 320 logs detection of the degradation of integrity by
transmitting to log entry to a logging location (e.g., a logging
server local to the process control system 110, a logging
server remote to the process control system such as, for
example, at the process control system provider, at a third
party, etc.). In some examples, the log entries are transmitted
using a remote logging protocol and/or system such as, for
example, a syslog logging system, a Simple Network Man-
agement Protocol (SNMP), etc.

In some examples, the network communications verifier
320 may verify the network communications based on other
parameters such as, for example, a source and/or destination
addresses (e.g., an Internet Protocol (IP) address, a domain
name, an email address, etc.), a message format used by the
process control node 115, content of the network communi-
cations, etc. If the network communications verifier 320
detects network communications matching network commu-
nications expected to be used by the process control node 115,
control proceeds to block 620 where the network communi-
cations verifier 320 continues to monitor and verify network
communications of the network communicator 230. As
described above, the operations of FIG. 6 may be executed
periodically and/or continuously. In the illustrated example,
the method of FIG. 6 is executed continuously.

FIG. 7 is a flowchart 700 representative of an example
method to perform an active process integrity verification.
The example method of FIG. 7 represents the sub-process
described in block 430 of FIG. 4.

The example method of FIG. 7 begins execution when the
active process verifier 330 loads the active process profile 331
from the profile store 240 (block 710). The active process
verifier 330 then identifies active processes executed by the
processor 240 (block 720). Active processes may be identi-
fied by, for example, interacting with an operating system of
the process control node 115. The active process verifier 330
then determines if the identified process is identified as an
exception within the active process profile 331 (block 730).
The process may be an exception if, for example, the process
was loaded from a particular directory, the process has a
memory footprint of a particular size, etc. If the process is
identified in the active process profile 331 as an exception,
control proceeds to block 780 where it is determined if more
active processes exist (block 780). If the process is not iden-
tified as an exception, control proceeds to block 740. The
active process verifier 330 then determines if the process is
included in the active process profile 331 (block 740). If the
process is not included in the active process profile 331 the
active process verifier 330 logs detection of the degradation of
integrity (block 770). In the illustrated example, the file sys-
tem verifier 310 logs the detection of the degradation of
integrity by storing a log entry in a log local to the process
control node 115. However, in some examples, the file system
verifier 310 logs detection of the degradation of integrity by
transmitting to log entry to a logging location (e.g., a logging
server local to the process control system 110, a logging
server remote to the process control system such as, for
example, at the process control system provider, at a third
party, etc.). In some examples, the log entries are transmitted

US 9,349,011 B2

13

using a remote logging protocol and/or system such as, for
example, a syslog logging system, a Simple Network Man-
agement Protocol (SNMP), etc. Detection of processes that
are not included in the profile and that are not contained in an
exception allows the active process verifier 330 to detect
degradations of integrity if new processes (e.g., unknown
processes, rogue processes, third party processes, etc.) are
being executed. If the identified process is included in the
profile, the active process verifier 330 determines (e.g., com-
putes) a hash value of a file associated with the process (e.g.,
an executable, a DLL, a configuration file, etc.) (block 750).

The active process verifier 330 determines if the computed
hash value of the identified file matches the stored hash value
corresponding to the identified file in the profile (block 760).
The computed hash value may not match the stored hash
value if, for example, the file associated with the process has
been modified. Comparing the hash values allows the active
process verifier 330 to detect if a process has been modified.
If the computed hash value does not match the stored hash
value, the active process verifier 330 logs detection of the
degradation of integrity (block 770). In the illustrated
example, the active process verifier 330 logs the detection of
the degradation of integrity by storing a log entry ina log local
to the process control node 115. However, in some examples,
the active process verifier 310 logs detection of the degrada-
tion of integrity by transmitting to log entry to a logging
location (e.g., a logging server local to the process control
system 110, a logging server remote to the process control
system such as, for example, at the process control system
provider, at a third party, etc.). In some examples, the log
entries are transmitted using a remote logging protocol and/or
system such as, for example, a syslog logging system, a
Simple Network Management Protocol (SNMP), etc. If the
computed hash value does match the stored hash value, the
active process verifier 330 proceeds to determine whether
there are more processes to be verified (block 780). In the
illustrated example, if no additional processes are to be vali-
dated, control proceeds to terminate the machine-readable
instructions of FIG. 7. The alerter 350 then receives a notifi-
cation that the sub-process has completed. In some examples,
the machine-readable instructions of FIG. 7 are repeated and/
or continued such that the active processes are re-verified.

FIG. 8 is ablock diagram of an example processor platform
800 capable of executing the example methods of FIGS. 4-7
to implement the example process control node of FIGS. 1
and/or 2, and/or the example integrity guard of FIGS. 2 and/or
3. The example processor platform 800 can be, for example,
a server, a personal computer, a mobile phone (e.g., a cell
phone), a personal digital assistant (PDA), an Internet appli-
ance, or any other type of computing device.

The system 800 of the instant example includes a processor
812. For example, the processor 812 can be implemented by
one or more microprocessors or controllers from any desired
family or manufacturer.

The processor 812 includes a local memory 813 (e.g., a
cache) and is in communication with a main memory includ-
ing a volatile memory 814 and a non-volatile memory 816 via
a bus 818. The volatile memory 814 may be implemented by
Synchronous Dynamic Random Access Memory (SDRAM),
Dynamic Random Access Memory (DRAM), RAMBUS
Dynamic Random Access Memory (RDRAM) and/or any
other type of random access memory device. The non-volatile
memory 816 may be implemented by flash memory and/or
any other desired type of memory device. Access to the main
memory 814, 816 is controlled by a memory controller.

The processor platform 800 also includes an interface cir-
cuit 820. The interface circuit 820 may be implemented by

10

15

20

25

30

35

40

45

50

55

60

65

14

any type of interface standard, such as an Ethernet interface,
a universal serial bus (USB), and/or a PCI express interface.

One or more input devices 822 are connected to the inter-
face circuit 820. The input device(s) 822 permit a user to enter
data and commands into the processor 812. The input
device(s) can be implemented by, for example, a keyboard, a
mouse, atouchscreen, a track-pad, atrackball, isopoint and/or
a voice recognition system.

One or more output devices 824 are also connected to the
interface circuit 820. The output devices 824 can be imple-
mented, for example, by display devices (e.g., a liquid crystal
display, a cathode ray tube display (CRT), a printer and/or
speakers). The interface circuit 820, thus, typically includes a
graphics driver card.

The interface circuit 820 also includes a communication
device (e.g., the network communicator 230) such as a
modem or network interface card to facilitate exchange of
data with external computers via a network 826 (e.g., an
Ethernet connection, a digital subscriber line (DSL), a tele-
phone line, coaxial cable, a cellular telephone system, etc.).

The processor platform 800 also includes one or more mass
storage devices 828 for storing software and data. Examples
of such mass storage devices 828 include floppy disk drives,
hard drive disks, compact disk drives and digital versatile disk
(DVD) drives. The mass storage device 828 may implement
the file system 220 and/or the profile store.

Coded instructions 832 to implement the methods of FIGS.
4-7 may be stored in the mass storage device 828, in the local
memory 813, in the volatile memory 814, in the non-volatile
memory 816, and/or on a removable storage medium such as
a CD or DVD.

From the foregoing, it will be appreciated that the above
disclosed methods, apparatus and articles of manufacture
provide the ability to detect a change (e.g., a degradation) in
integrity of a process control system.

Although certain example methods, apparatus and articles
of manufacture have been described herein, the scope of
coverage of this patent is not limited thereto. On the contrary,
this patent covers all methods, apparatus and articles of
manufacture fairly falling within the scope of the claims of
this patent.

What is claimed is:
1. A method to identify a degradation of integrity of a
process control system, the method comprising:

monitoring, with a processor, a file on a file system of the
process control system;

verifying, with the processor, if the file is identified in a
system profile, the system profile identifying files
expected to be present on the file system;

identifying, with the processor, a degradation of integrity
of the process control system when the file is not iden-
tified in the system profile;

alerting a process control system provider when the deg-
radation of integrity is identified to indicate that a pro-
cess control system administrator has attempted to
modify the process control system, the process control
system provider to supply the process control system to
the process control system administrator; and

terminating an illegitimate process associated with the file
identified in the system profile when the degradation of
integrity is identified.

2. The method described in claim 1, further comprising:

comparing the file to a value associated with the file in the
system profile when the file is included in the system
profile to determine whether the file matches the value;
and

US 9,349,011 B2

15

identifying the degradation of integrity of the process con-
trol system when the file is included in the system profile
and when the file does not match the value.

3. The method as described in claim 1, further comprising
alerting the process control system administrator when the
degradation of integrity is identified.

4. The method as described in claim 1, wherein the degra-
dation of integrity is not identified when the file is identified
as an exception to the system profile.

5. The method as described in claim 1, further comprising
initializing the system profile, wherein initializing the system
profile comprises:

identifying the file on the file system;

computing a value associated with the file; and

storing the value in the system profile.

6. The method as described in claim 1, further comprising
retrieving the system profile from a remote profile server.

7. The method as described in claim 1, further comprising:

identifying a process being executed by a processor of the
process control system; and

wherein the file identified on the file system is associated
with the process being executed by the processor.

8. The method as described in claim 1, further comprising:

identifying network communications of a network com-
municator of the process control system;

comparing a property of the network communications to a
stored property of the system profile; and

identifying the degradation of integrity of the process con-
trol system when the property of the network communi-
cations does not match the stored property of the system
profile.

9. A method to identify a degradation of integrity of a

process control system, the method comprising:

identifying, with a processor, a file on a file system of the
process control system;

computing a hash value of the file;

comparing the computed hash value to a value associated
with the file in a system profile, wherein the value asso-
ciated with the file in the system profile is a previously
computed hash value;

identifying, with the processor, a degradation of integrity
of the process control system when the computed hash
value does not match the value associated with the file;

alerting a process control system provider when the deg-
radation of integrity is identified to indicate that a pro-
cess control system administrator has attempted to
modify the process control system, the process control
system provider to supply the process control system to
the process control system administrator; and

terminating an illegitimate process associated with the file
when the degradation of integrity is identified.

10. An apparatus to identify a degradation of integrity of a

process control system, the apparatus comprising:

a file system verifier to monitor a difference between a
property of a file stored on a file system of a process
control node and a first stored value as a degradation of
integrity;

an active process verifier to identify a difference between a
property of an active process executed by the process
control node and a second stored value as the degrada-
tion of integrity; and

an alerter to alert a process control system provider when
the degradation of integrity is identified to indicate that
a customer has attempted to modify the process control
system, the alerter to terminate an illegitimate process
associated with the file when the degradation of integrity
is identified, the process control system provider to pro-

10

15

20

25

30

35

40

45

50

55

60

65

16

vide the process control system to a process control
system administrator of the process control system,
wherein at least one of the file system verifier, the active
process verifier, or the alerter is implemented by hard-
ware.

11. The apparatus as described in claim 10, wherein the
alerter is to alert the process control system administrator
when the degradation of integrity is identified.

12. The apparatus as described in claim 10, wherein the
first stored value is a hash value, and the property of the file is
a computed hash value.

13. The apparatus as described in claim 10, wherein the
property of the active process is a computed hash value of a
file associated with the process.

14. The apparatus as described in claim 11, wherein the
alerter is to alert at least one of the process control system
provider or the process control system administrator by send-
ing an email message.

15. The apparatus as described in claim 10, further com-
prising a network communications verifier to detect a differ-
ence between a property of monitored network communica-
tions of a network communicator of the process control node
and a third stored value as the degradation.

16. A tangible computer-readable storage disk or storage
device storing instructions which, when executed, cause a
machine to at least:

monitor a file on a file system of a process control system;

verify whether the file is identified in a system profile, the

system profile identifying files expected to be present on
the file system;

identify a degradation of integrity of the process control

system when the file is not identified in the system pro-
file;

alert a process control system provider when the degrada-

tion of integrity is identified to indicate that a process
control system administrator has attempted to modify
the process control system, the process control system
provider to supply the process control system to the
process control system administrator; and

terminate an illegitimate process associated with the file

when the degradation of integrity is identified.

17. The computer-readable storage disk or storage device
as described in claim 16, further storing instructions which,
when executed, cause the machine to at least:

compare the file to a value associated with the file in the

system profile when the file is included in the system
profile to determine whether the file matches the value;
and

identify the degradation of integrity of the process control

system when the file is included in the system profile and
when the file does not match the value.

18. The computer-readable storage disk or storage device
as described in claim 16, further storing instructions which,
when executed, cause the machine to at least:

identify a process being executed by a processor of the

process control system; and

wherein the file identified on the file system is associated

with the process being executed by the processor.

19. The computer-readable storage disk or storage device
as described in claim 16, further storing instructions which,
when executed, cause the machine to at least:

identify network communications of a network communi-

cator of the process control system;

compare a property of the network communications to a

stored property of the system profile; and

US 9,349,011 B2

17

identify the degradation of integrity of the process control
system when the property of the network communica-
tions does not match the stored property of the system
profile.

20. A tangible computer-readable storage disk or storage
device storing instructions which, when executed, cause a
machine to at least:

identify a file on a file system of a process control system;

compute a hash value of the file;

compare the computed hash value to a value associated

with the file in a system profile, wherein the value asso-
ciated with the file in the system profile is a previously
computed hash value;

identify a degradation of integrity of the process control

system when the computed hash value does not match
the value associated with the file;

alert a process control system provider when the degrada-

tion of integrity is identified to indicate that a process
control system administrator has attempted to modify
the process control system, the process control system
provider to supply the process control system to the
process control system administrator; and

5

10

15

20

18

terminate an illegitimate process associated with the file
when the degradation of integrity is identified.

21. A method to identify a degradation of integrity of a

process control system, the method comprising:

monitoring, with a processor, a file on a file system of the
process control system, the process control system to
control at least one of industrial or utility service facili-
ties;

verifying, with the processor, if the file is identified in a
system profile, the system profile identifying files
expected to be present on the file system;

identifying, with the processor, a degradation of integrity
of the process control system when the file is not iden-
tified in the system profile;

alerting a process control system provider when the deg-
radation of integrity is identified to indicate that a cus-
tomer operator has modified the process control system,
the process control system provider to configure and
supply the process control system to the customer opera-
tor; and

terminating an illegitimate process associated with the file
when the degradation of integrity is identified.

#* #* #* #* #*

